大家下午好,我是梁举,来自宽邦科技。今天非常高兴在深圳与大家一起我们来共话量化。其实会议本来最开始定的是福田香格里拉40层,但报名太过踊跃,我们临时又把会议转到了三层,最多容纳300人的厅,场地扩大了一倍有多。
这也与市场高度相关,私募量化投资规模从百亿、千亿到上万亿的规模,也就短短几年的时间。量化行业发展也经历了从大家最开始看不见、看不起到看不懂。市场里面从个人到机构到
更新时间:2024-06-07 10:33
桥水基金创始人雷•达里奥在《原则》一书中说到:“投资是一个反复的过程,你下注,失败(有时很痛苦),学习新知识并重试。在这个艰难的过程中,你可以通过不断地反复试验来改进自己的决策。”
2017年初,中信证券搭建人工智能团队,为其内部机构提供人工智能应用研发、部署、运行统一云平台,提供统一的数据,算力和研发运行环境。
3年后,团队宋群力、徐畅泽、胡振宁、张俊灵4人联合撰写了论文《中信证券智能云平台以及智能应用》(以下简称《智能云论文》)援引了以上这段话,并分享其团队在框架、投顾、算法、咨询、风险识别、文档抽取、投研自动报告等9大方面的应用。
“人工智能、量化都是保密性比较强的工作,为什么
更新时间:2024-06-07 10:32
“4月29日,由华泰证券、宽邦科技、亚马逊云科技、朝阳永续、金融阶等多家市场权威机构联合组织撰写的《2021年中国量化投资白皮书》正式发布,并在深圳举办发布会。超量子基金创始人张晓泉出席会议并作题为《量化的未来:理解和应对不确定性》的演讲,我们对文字进行实录,以飨读者。” 感谢今天的主办方,今天我也给大家带来一些干货,是我们自己团队经常思考的一些底层逻辑问题。
刚才基本上每位演讲者都提到了量化的内卷,
更新时间:2024-06-07 10:32
以下是直播实录
谢谢大家,今天非常荣幸能够参加量化投资与机器学习公众号的举办的这场量化活动。今天我分享的主题是《金融科技与量化交易的中国实践》。
首先,做一个简单的自我介绍。我从05年到09年在北大就读物理学,毕业之后去了美国,12-13年在Citadel从事美股高频交易,工作一年多后就从纽约回到中国,创立了锐天投资(以下简称:锐天)。锐天从2013年开始到现在已经走过了七个年头,也见证了中国资本市场在量化领域的发展。今天我就花一些时间跟大家做一个简单的分享,谈谈这个行业的现在过去以及未来。
首先简单介绍一下量化交易这个概念吧。其实量化交易是一个非常宽泛的概念,今天我们就挑几个大
更新时间:2024-06-07 10:19
人工智能投资时代到来了吗?未来基金的将没有投资经理。幻方量化CEO陆政哲介绍幻方人工智能量化投资实践:什么是人工智能,人工智能的发展与应用,当前人工智能投资的实践案例,幻方在人工智能投资上的发展和人工智能投资的挑战与未来。
[https://www.bilibili.com/video/BV1zD4y1Q7Un?from=search&seid=2181794736576675819&spm_id_from=333.337.0.0](https://www.bilibili.com/video/BV1zD4y1Q7Un?from=search&seid=2181794736576675819
更新时间:2024-06-07 10:17
这是旧版的例子, 只能在2.0.0的Aistudio中运行
https://bigquant.com/experimentshare/54fe864132a7447894540d70cd2e36e5
\
更新时间:2024-05-24 11:02
本系列文章为大家介绍了技术分析指标,并且介绍了一些常见的使用技术指标构建的策略
量化投资是通过数学模型和算法对市场数据进行分析和交易决策的投资方法。技术分析(Technical Analysis)是量化投资中的一个重要分支,旨在通过分析历史价格和交易量数据来预测未来的价格走势。技术分析假设所有市场信息都反映在价格中,价格走势有一定的模式和规律,因此可以通过数学方法进行分析和预测。
技术分析通过多种数学方法和指标对市场数据进行分析,帮助投资者识别市场趋势和交易信号。TA-Lib库提供了丰富的技术分析函数,方便投资者进行量化分析和策略开发。掌
更新时间:2024-05-23 06:54
新版本暂无深度学习可视化模块
在阅读了 深度学习的简要介绍后,本文将介绍深度学习DNN模型及其在量化投资领域中的应用。
机器学习作为人工智能的核心,其传统算法在解决很多问题上都表现出了高效性。随着近些年数据处理技术上的进步和计算能力的提升,深度学习得以在很多问题上也大放光彩,成为近一段时间互联网、金融等领域的大热门。
在量化投资领域,机器学习尤其是由统计学延伸的各种算法一直以来都被尝试应用在选股、择时等策略的开发上,随着深度学习在其他领域上的突破,其在自动化交易甚至投资策略的自开发自
更新时间:2024-05-21 07:27
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-20 10:24
更新时间:2024-05-20 07:21
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors
https://bigquant.com/wiki/doc/dai-PLSbc1SbZX
[ht
更新时间:2024-05-20 06:21
\
更新时间:2024-05-20 02:30
了解量化投资是成为宽客道路上的一块重要的敲门砖。本文从量化投资定义、量化投资特点、量化投资优势及量化投资实践流程四方面简要为大家介绍量化投资相关知识。
量化投资是指通过数量化模型建立科学投资体系,以获取稳定收益。 在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。在国内,量化投资不再是一个陌生的词汇,近几年得到了迅猛的发展。
提起量化投资,就不得不提量化投资的标杆——华尔街传奇人物詹姆斯·西蒙斯(James Simons)。视频地址:“[横扫华尔街的数学家](https://bigquant.c
更新时间:2024-05-20 02:24
\
更新时间:2024-05-20 02:21
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-20 02:15
算法交易起源于上世纪中叶的配对交易
历史上最早使用算法交易的例子可以追溯到1949年。对冲基金之父阿尔弗雷德·琼斯,利用空对多3:7的比例进行配对交易,在1955年到1964年间,综合回报率高达28%。到了上世纪60年代早期,投资者开始利用计算机通过分析股票的周线和月线来预测价格运动方向。
配对交易逐渐成熟,发展成后来的算法交易。随后算法交易策略慢慢在华尔街流传开来并被广泛使用,同时也带来了非常可观的盈利。原来在摩根士丹利从事配对交易的研究员,后来逐渐成为如大卫·肖、詹姆斯·西蒙斯这类明星基金经理手下的精英,算法交易的“黑盒子”便由此诞生。
随着计算机的广泛普及,华尔街各大
更新时间:2024-05-20 02:09
本视频课程包含python、pandas、numpy基础,配合在BigQuant平台上练习,掌握编程基础,读懂代码、编写简单的代码。
https://www.bilibili.com/video/BV1dE411d7Q4?p=2
\
\
更新时间:2024-05-20 02:09
更新时间:2024-05-20 02:09
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
\
https://bigquant.com/experimentshare/723e10568f294571924b89f3953ce20b
\
更新时间:2024-05-20 01:02
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
https://bigquant.com/experimentshare/72d5601550164505aad979f7265f8fec
\
更新时间:2024-05-20 00:50
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 10:24
更新时间:2024-05-17 09:18
我们常用量化投资的方式预测未来可以交易的个股,从而获取最大收益。但能不能反其道而行之,通过量化的形式诊断个股:判断是否可以买入?仓位如何设置最合理?
对于资深投资者来说,可以根据历史交易经验,结合该股的特性及大盘环境,判断在这类情况下股票的胜率及收益如何,以此作为买入决策。
但有个更简单、快速的方法,可以借助量化快速找出股票在大盘环境下历史的收益率和胜率情况,作为买入决策。
本次分享将介绍如何用量化的方式诊断个股,并依据量化分析结果作为买入决策和制定交易计划。
[/wiki/static/upload/9d/9d17fabf-6f78-4e80-8da0-5
更新时间:2024-05-17 08:24
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 08:23
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 07:50