选股条件
动量指标选股
仓位设置
等权重
调仓规则
1-5个交易日
风险管理
无
回测设置
初始资金:500000
起始时间:2023-06-01
结束时间:2024-08-20
交易成本:买入万3,卖出千分之1.3,不足5元按5元收取
撮合价格:开盘价
\
绩效指标
总收益:16%
年化收益:13%
夏普比率:0.87
最大回撤:6%
结果分析
整个策略表现不错,年化收益远超银行理财产品,其中最大回撤为5%,主要是行业
更新时间:2024-09-02 11:02
选股:选择基础股票池
打分:对股票打分
仓位:根据打分和持股数量分配仓位
回测:设置调仓周期和买卖点等,回测查看效果
\
m1
选股,使用 A股-基础选股 模块,剔除创业板,科创板和北交所,下拉还可以按照申万行业、融资融券等基本条件进行筛选。更新时间:2024-08-22 02:39
选股:选择基础股票池
打分:对股票打分
仓位:根据打分和持股数量分配仓位
回测:设置调仓周期和买卖点等,回测查看效果
\
m1
选股,使用 A股-基础选股 模块,剔除创业板,科创板和北交所,下拉还可以按照申万行业、融资融券等基本条件进行筛选。更新时间:2024-08-22 02:36
本策略是104选股策略(🌟104-选股策略)模板的具体应用。
由于公司利润变化较大,而且依赖于会计准则、研发投入、设备更新投入等因素,难以正确反映公司的经营状况,而销售收入更加稳定,在不同的行业之中也有更好的可比性。在1984年。费雪提出了市收率因子(PS)选股方法,在费雪看来,低市收率公司存在被低估的可能。因为低市值和高销售收入都会导致这个指标的值比较小,而两者分别表示了市场还没有意识到股票的价值,以及企业的运营情况好于大家的预期情况,这一指标被广泛任务是选股的核心方
更新时间:2024-08-22 02:07
m1
选股,使用 A股-基础选股 模块,剔除掉北交所以及ST的股票,下拉还可以按照申万行业、融资融券等基本条件进行筛选。![
更新时间:2024-08-22 02:01
策略逻辑:价格冲击偏差较小的股票表现较好,即前期容易下跌上涨困难的股票后期表现更佳,买入
\
请克隆策略,前往最新版本开发环境3.0中运行
{{membership}}
https://bigquant.com/codeshare/38959187-2110-4d94-9853-de5ab21e357d
\
更新时间:2024-08-01 16:13
\
更新时间:2024-07-16 03:19
中证红利指数(CSI Dividend Index)是由中证指数公司编制的,旨在反映中国A股市场中高股息率股票的整体表现。该指数选取了股息率较高的股票构成样本,具有较低的波动性和较高的分红收益率,是稳健投资者喜爱的标的。
本策略主要通过筛选中证红利指数中的股票,重点考虑股息率(Dividend Yield)和净资产收益率(Return on Equity,ROE)两个因子。股息率是衡量股票分红收益的一项指标,而ROE则反映了企业运用资本的效率。综合考虑这两个因子,可以筛选出既能提供高分红,又具有较好运营能力的股票,进而实现稳健的收益。
回撤控制和夏普率的提升是本策略的两个
更新时间:2024-06-25 11:14
更新时间:2024-06-18 06:29
Stockranker是专为选股量化而设计的机器学习算法,其选股思路是根据训练得到的模型,计算股票池中股票的当日评分,根据评分对股票池中的股票进行排序,排序靠前的股票就是当日选出的股票。
这种选股逻辑意味着不论股票的评分是多少,只要排序靠前就能被选中。实际上排序靠前股票的评分有不小差距。而评分反应的是股票的投资价值,评分高表明该股票的投资价值高,评分低表明该股票的投资价值低。因此排序算法仅能反应当天的相对投资价值,也就是矬子里面拔将军,不能反映股票的绝对投资价值。
而评分则不一样,他反应的是股票的绝对投资价值,也就是把股票的投资价值量化了。 本策略的逻辑就是根据评分来选股。
更新时间:2024-05-24 10:57
更新时间:2024-05-20 10:04
更新时间:2024-05-20 10:04
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-20 07:17
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors
https://bigquant.com/wiki/doc/dai-PLSbc1SbZX
[ht
更新时间:2024-05-20 06:21
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-20 02:15
本文为旧版实现,供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
\
这是本系列专题研究的第五篇:基于长短期记忆网络LSTM的深度学习因子选股模型。LSTM作为改进的RNN(循环神经网络),是一种非常成熟的能够处理变化的序列数据的神
更新时间:2024-05-20 02:09
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-20 02:09
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
https://bigquant.com/experimentshare/72d5601550164505aad979f7265f8fec
\
更新时间:2024-05-20 00:50
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 10:35
更新时间:2024-05-17 02:33
买入条件:满足
更新时间:2024-05-16 09:59
买入条件:满足
更新时间:2024-05-16 09:28
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 02:00
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 02:00
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 10:36