Python基础入门
\
由ypyu创建,最终由small_q更新于
\
由ypyu创建,最终由small_q更新于
数据导入部分使用了dai
[https://bigquant.com/codesharev2/6cfc9123-1ada-40b1-a96d-c84a27bfdadf](https://bigquant.com/codesharev2/6cfc9123-1ada-40b1-a96d-c84a27b
由qxiao创建,最终由small_q更新于
来源:elitedatascience编译:caoxiyang
成千上万的数据科学新手会在不知不觉中犯下一个错误,你知道是什么吗?这个错误可以一手毁掉你的机器学习模型,这并不夸张。我们现在来讨论应用机器学习中最棘手的障碍之一:过拟合(overfitting)。
在本文中,
由ypyu创建,最终由small_q更新于
了解量化投资是成为宽客道路上的一块重要的敲门砖。本文从量化投资定义、量化投资特点、量化投资优势及量化投资实践流程四方面简要为大家介绍量化投资相关知识。
量化投资是指通过数量化模型建立科学投资体系,以获取稳定收益。 在海外的发展已有30多年的历史,其投
由ypyu创建,最终由small_q更新于
“人工智能”概念日益兴起,“谷歌围棋程序AlphaGo全面碾压专业选手”类似新闻逐渐增多,人工智能时代已经来临。通过短文快速了解什么是人工智能。
人工智能(英语:Artificial Intelligence, AI)亦称机器智能,是指由人工制造出来的系统所表现出来的智能,可以概括为
由ypyu创建,最终由small_q更新于
\
由small_q创建,最终由small_q更新于
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
[https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW](https://bigquant.com
由iquant创建,最终由iquant更新于
由ypyu创建,最终由ypyu更新于
由qxiao创建,最终由small_q更新于
第五讲:无模型预测 研究科学家Hado van Hasselt对无模型预测及其与蒙特卡罗和时域差分算法的关系进行了更深入的研究。
[https://www.youtube.com/watch?v=eaWfWoVUTEw](https://www.youtube.com/watch?v=eaWfWo
由qxiao创建,最终由qxiao更新于
MDPs和动态规划 研究科学家Diana Borsa解释了如何用动态规划解决MDPs,以提取准确的预测和良好的控制政策。
[/wiki/static/upload/81/813ce39b-112f-4d7b-b034-1b584731213d.mp4](/wiki/static/upload/81
由qxiao创建,最终由qxiao更新于
本文原载于[how-to-start-a-deep-learning-project](https://link.zhihu.com/?target=https%3A//medium.com/%40jonathan_hui/how-to-start-a-deep-lear
由ypyu创建,最终由ypyu更新于
异常值问题在数据分析中经常遇到,本文介绍了多种处理数据异常值的方法。
在金融数据分析中,常常会遇到一些值过大或者过小的情况,当用这些值来构造其他特征的时候,可能使得其他的特征也是异常点,这将严重影响对金融数据的分析,或者是影响模型的训练。下面将带大家学习一些关于异常点处理
由clearyf创建,最终由clearyf更新于
第11讲:多步骤和间歇政策 研究科学家Hado van Hasselt讨论了多步和关闭策略算法,包括各种减少方差的技术。
[https://www.youtube.com/watch?v=u84MFu1nG4g](https://www.youtube.com/watch?v=u84MFu1nG4
由qxiao创建,最终由qxiao更新于
由small_q创建,最终由small_q更新于
由clearyf创建,最终由qxiao更新于
由ypyu创建,最终由ypyu更新于
# 102
def func(a):
'''
a: 输入数组,已经排好序
返回值:出现次数最多的元素,如果有多个,输出最早出现的
'''
dic = dict()
for x in range(len(a)):
由bqjbfe2i创建,最终由bqjbfe2i更新于
这是本系列专题研究的第四篇:基于卷积神经网络CNN的深度学习因子选股模型。卷积神经网络(Convolutional Neura
由clearyf创建,最终由clearyf更新于
本视频课程包含python、pandas、numpy基础,配合在BigQuant平台上练习,掌握编程基础,读懂代码、编写简单的代码。
[https://www.bilibili.com/video/BV1dE411d7Q4?p=2](https://www.bilibil
由iquant创建,最终由iquant更新于
Google 2015年11月开源的人工智能系统 数据流(flow)图技术来进行数值计算
节点:数据 / 值运算 边:多维数据(tensors - 张量,python numpy ndarray)的流动
构建图:将计算流程表示成图 执行图:通
由ypyu创建,最终由ypyu更新于
由ypyu创建,最终由ypyu更新于
算法交易起源于上世纪中叶的配对交易
历史上最早使用算法交易的例子可以追溯到1949年。对冲基金之父阿尔弗雷德·琼斯,利用空对多3:7的比例进行配对交易,在1955年到1964年间,综合回报率高达28%。到了上世纪60年代早期,投资者开始利用计算机通过分析股票的周线和月线来预测价格运动
由ypyu创建,最终由ypyu更新于
这是本系列专题研究的第六篇:基于DNN模型的深度学习智能选股策略。本文简单介绍了和DNN相关的原理,并举了一个实例,具体展示了如何应用以及应用的结果。
神经网络的每个单元结构如下:
![图1.神经元结构](/wiki/
由clearyf创建,最终由clearyf更新于
从AlphaGo到AlphaStar,深度学习的强大逐步展现给世人。那么,什么是深度学习呢?本文将简要介绍深度学习的框架以及流程。
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,
由clearyf创建,最终由clearyf更新于