事件型策略:MACD策略多股

  • 策略描述:运行环境:AiStudio 3.0.0
  • 策略描述:MACD 快线上传慢线买入,慢线上穿快线卖出
  • 买入股票:'600519.SH'(贵州茅台), '600941.SH'(中国移动), '601398.SH'(工商银行),  '601857.SH'(中国石油), '000001.S

由small_q创建,最终由small_q更新于

事件型策略:MACD策略单股

  • 策略描述:运行环境:AiStudio 3.0.0
  • 策略描述:MACD 快线上传慢线买入,慢线上穿快线卖出
  • 买入股票:'600519.SH'(贵州茅台)
  • 数据表名:cn_stock_bar1d
  • 回测时长:2020-1-1 至 今天
  • 初始资金:500000
  • 买卖时间:开盘

由small_q创建,最终由small_q更新于

事件型策略:通道突破策略多股

  • 策略描述:运行环境:AiStudio 3.0.0
  • 策略描述:我们将过去20日收盘价(均值+2倍标准差)作为up_limit,(均值-2倍标准差)作为low_limit
  • 买入股票:'600519.SH'(贵州茅台), '600941.SH'(中国移动), '601398.SH'(工商银行)

由small_q创建,最终由small_q更新于

事件型策略:通道突破策略单股

  • 运行环境:AiStudio 3.0.0
  • 策略描述:我们将过去20日收盘价(均值+2倍标准差)作为up_limit,(均值-2倍标准差)作为low_limit
  • 买入股票:'600519.SH'(贵州茅台)
  • 买卖规则:收盘价大于up_limit买入,收盘价小于low_limit卖出

由small_q创建,最终由small_q更新于

事件型策略:海龟策略多股

  • 运行环境:AiStudio 3.0.0
  • 策略描述:我们将过去20日最高收盘价作为hist_high,过去10日最小收盘价作为hist_low
  • 买入股票:'600519.SH'(贵州茅台), '600941.SH'(中国移动), '601398.SH'(工商银行),  '601857.SH

由small_q创建,最终由small_q更新于

事件型策略:海龟策略单股

  • 运行环境:AiStudio 3.0.0
  • 策略描述:我们将过去20日最高收盘价作为hist_high,过去10日最小收盘价作为hist_low
  • 买入股票:'600519.SH'(贵州茅台)
  • 买卖规则:hist_high大于hist_low买入,hist_low大于hist_high卖出

由small_q创建,最终由small_q更新于

事件型策略:双均线策略多股

  • 运行环境:AiStudio 3.0.0
  • 策略描述:我们将5日平均开盘价作为短线,120日平均开盘价作为长线
  • 买入股票:'600519.SH'(贵州茅台), '600941.SH'(中国移动), '601398.SH'(工商银行),  '601857.SH'(中国石油), '000001.

由small_q创建,最终由small_q更新于

事件型策略:双均线策略单股

  • 运行环境:AiStudio 3.0.0
  • 策略描述:我们将5日平均收盘价作为短线,40日平均收盘价作为长线
  • 买入股票:600519.SH(贵州茅台)
  • 买卖规则:短线上传长线买入,长线下穿短线卖出
  • 数据表名:cn_stock_bar1d
  • 回测时长:2020-1-1 至 今天

由small_q创建,最终由small_q更新于

量化机器学习系列分享(八)Pytorch代码的基本框架

1. Pytorch介绍

1.1 Pytorch包介绍

Python中的Pytorch包,是使用最多的,用来构建神经网络模型的工具,它的特点包括:

  • 可以灵活地搭建任何类型的神经网络模型
  • 支持使用GPU运算
  • 有一套通用的代码框架

Pytorch包在BigQuant平台是有

由bq2qbou2创建,最终由bq2qbou2更新于

量化机器学习系列分享(七)深度学习模型

1. 前馈神经网络(DNN)

一般来说,深度学习和神经网络是同一个概念

1.1 感知机(Perceptron)

在之前的分享中,我们介绍过一个线性分类器,叫做感知机(Perceptron),并且介绍过它是神经网络的基本单元

感知机的运算公式是:

  • 假设我们有F个特征,每个特征一

由bq2qbou2创建,最终由bq2qbou2更新于

高频价量数据的因子化方法-多因子Alpha系列报告之四十一-广发证券

报告摘要

高频因子的优势:与低频因子相比,高频数据在量化选股中的优势主要体现在:因子拥挤度相对较低、因子多样性好、检验因子的独立样本多。

研究内容:本报告从四类不同的角度构建因子:日内价格相关因子、日内价量相关因子、盘前信息因子、特定时段采样因子。考察了 46 个因

由small_q创建,最终由small_q更新于

因子合成与组合优化

多因子模型的理论基础

![](/wiki/api/attachments.redirect?id=5912caba-c31a-4155

由xiaoshao创建,最终由small_q更新于

量化多因子研究基石:因子分析

因子分析简介

当前的股票、期货、债券、期权研究均以因子投资为主流趋势,且势头越发明显。本文所指因子分析是多因子策略、指数增强策略、多空中性策略的基石,其研究好坏直接关系和决定了策略的收益能力(信息比率),常被业内人士所称研究之重中之重,策略之核心所在。

![](/wiki/api/att

由xiaoshao创建,最终由small_q更新于

量化机器学习系列分享(六)无监督学习常见算法

1. 无监督学习之聚类算法

1.1 聚类方法简介

聚类算法是一种无监督学习算法,它和监督学习任务下的分类算法是有明显对比的

  • 监督学习的分类算法:数据属于哪一个类别是有标签定义的,模型有没有分类正确我们也是可以明显评判出来的
  • 无监督学习的聚类算法:数据没有明确的标签表明类别,聚

由bq2qbou2创建,最终由small_q更新于

量化机器学习系列分享(三)逻辑回归与优化方法

1. 逻辑回归

1.1 分类问题的定义

分类问题的标签是离散型的变量,我们的目的是用特征,来预测标签归属于几个类别当中的某一种

  • 如果是预测标签属于两个类别当中的哪一种,就叫二分类问题,比方说预测股票明天是涨,还是不涨,两个类别
  • 如果是预测标签属于多个类别当中的哪一种,

由bq2qbou2创建,最终由bq2qbou2更新于

量化机器学习系列分享(二)模型评估与特征选择

1. 模型评估

1.1 偏差与方差

上次分享我们提到过,模型的好坏评价标准,是模型在测试集上的预测是否准确,好比一个学生在期末考试当中拿高分才是学的好

模型在测试集上的预测误差(Error),可以分为三种来源

  • 偏差(Bias):高偏差的模型表现为:

由bq2qbou2创建,最终由bq2qbou2更新于

量化机器学习系列分享(四)更多种类的分类模型

我们今天分享的四种模型,包括上次分享的逻辑回归,都是一些轻量级的分类模型,适用于数据量少,特征量少的分类任务

\

1. 支持向量机(SVM)

1.1 SVM的概念

支持向量机(Support Vector Machine)是在神经网络流行之前最强大的机器学习算法

SVM在二

由bq2qbou2创建,最终由bq2qbou2更新于

量化机器学习系列分享(五)树模型与组合模型

nan1. 决策树模型

1.1 决策树模型的概念

决策树是机器学习中的一个典型的非参数模型,它使用规则,而不是参数,来定义模型

  • 这种决策方式其实是和人类最直接的思考方式是类似的
  • 例如,我们使用身高这一特征,去预测性别这一标签的时候,一个比较直觉的方式是,如果身高大于 175 就分

由bq2qbou2创建,最终由small_q更新于

因子构建

{{membership}}

[https://bigquant.com/codeshare/075d9454-cde6-4306-a113-84fcae5b3248](https://bigquant.com/codeshare/075d9454-cde6-4306-a113-84fcae5b3

由small_q创建,最终由small_q更新于

因子分析

{{membership}}

[https://bigquant.com/codeshare/013e4881-edcc-42b0-8944-60b97980eb5a](https://bigquant.com/codeshare/013e4881-edcc-42b0-8944-60b97980e

由small_q创建,最终由small_q更新于

因子专题

由small_q创建,最终由small_q更新于

分页:第1页第2页第3页第4页第5页第6页第7页第8页第9页第10页
{link}